

メトロポリスを超えた枠組みで 我々はどこまで行けるか?

総合研究大学院大学 司馬博文

サンプリング問題

U,abla Uの情報のみを用い,確率分布 $\pi(x) \propto e^{-U(x)}$ からのサンプルを構成せよ

Piecewise Deterministic Monte Carlo

例: $U^{(d)}(x) := \frac{1}{2} \sum_{i=1}^{d} x_i^2 \quad (x \in \mathbb{R}^d)$ 標準 Gauss

- ① 補助変数 V の分布 $\mu(v) \propto e^{-K(v)}$ を導入して問題を拡張 $\widetilde{\pi}(x,v) := \pi(x)\mu(v)$

cf. Fearnhead+ (2018)

2 力学系

 $\dot{x}_t = f(x_t, v_t)$ $\dot{v}_t = g(x_t, v_t)$

 $\lambda(x, v) = (v | \nabla U(x))_+$ の強度で到着するランダム時刻

に従って運動する曲線 $t\mapsto (x_t,v_t)$

 T_1 , T_2 , \cdots

4 ランダムな速度ジャンプ

 $V_{T_i} \sim Q(x_{T_i-}, v_{T_i-})$

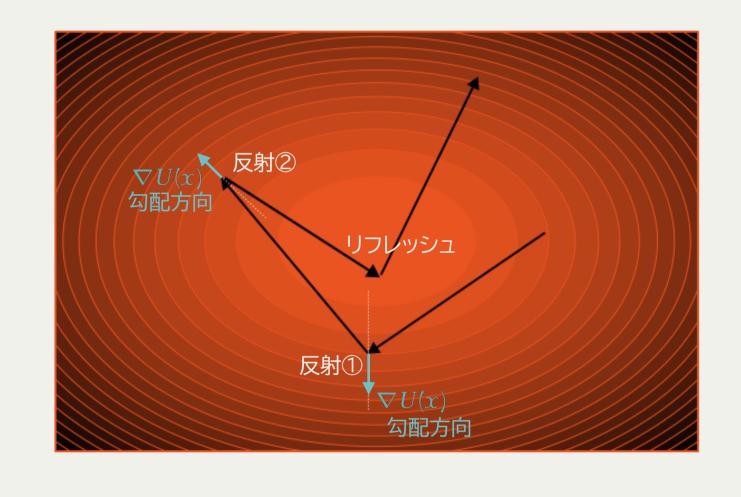
で新しい速度をサンプリング

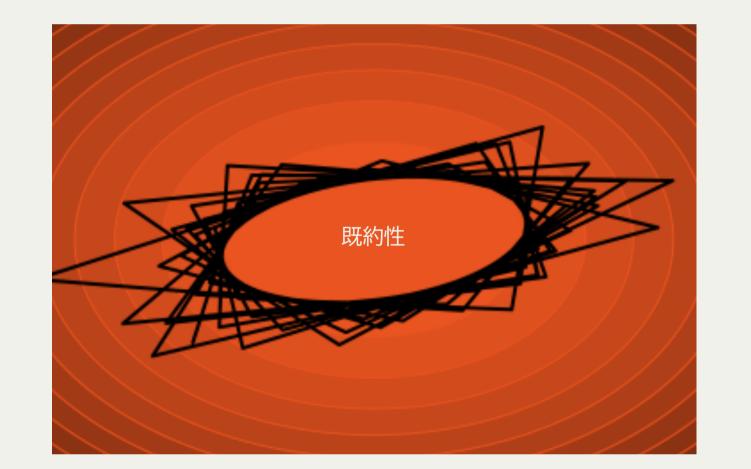
(⑤ リフレッシュ)

 $V_{T_i} \sim \mu(v) dv$

で平衡分布から取り直す

Bouncy Particle Sampler





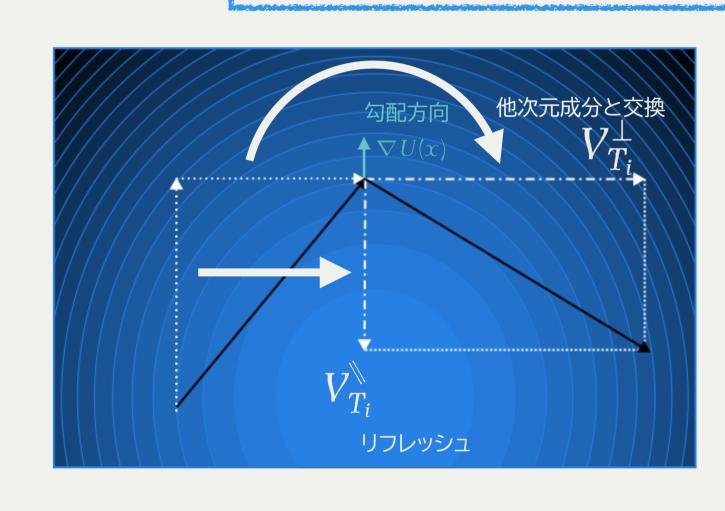
④ 等高線に関する反射

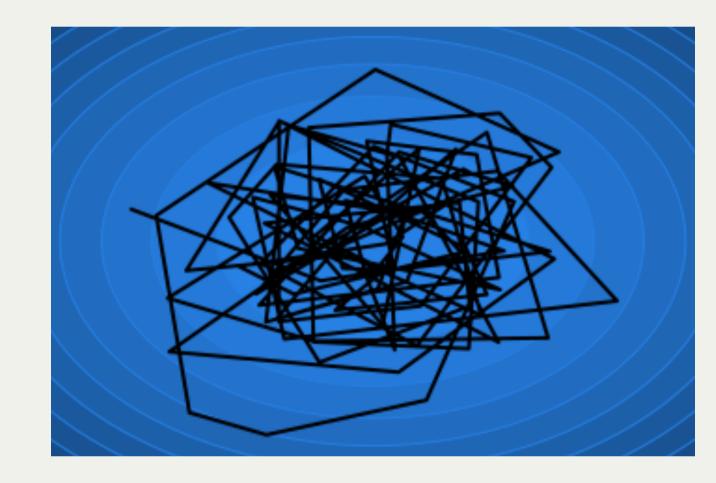
$$v_{T_i} \leftarrow v_{T_i-} - 2 \frac{(\nabla U(x_{T_i})|v_{T_i-})}{\|\nabla U(x_{T_i})\|^2} \nabla U(x_{T_i})$$

⑤ 定期的な速度リフレッシュ(必須) $\rho > 0$

FECMC

Forward Event-Chain Monte Carlo





④ 反射とリフレッシュの組合せ: Parallel Refresh + Orthogonal Switch

別々に取り
$$\left\{egin{aligned} V_{T_i}^{\mathbb{N}} \sim Q^{\mathbb{N}}(x_{T_i-}) \ V_{T_i}^{\mathbb{N}} \leftarrow Av_{T_i-}^{\mathbb{N}} \end{aligned}
ight.$$
 合わせる $\left\{egin{aligned} V_{T_i} \leftarrow V_{T_i}^{\mathbb{N}} + V_{T_i}^{\mathbb{N}} \end{aligned}
ight.$

(⑤ 追加のリフレッシュ動作が不要) $\rho = 0$

Scaling Analysis: $d \to \infty$ 収束極限を比較することでアルゴリズムの性能を比較

ポテンシャルの過程 $Y_t^{(d)} := \frac{U^{(d)}(X_{dt}^d) - d}{\sqrt{d}}$ の収束極限はいずれも OU 過程 $dY_t = -\frac{\sigma^2}{L}Y_t\,dt + \sigma\,dB_t$ になる

定理(Bierkens+2022)

$$\sigma_{\mathrm{BPS}}(\rho)^2 = 8 \int_0^\infty e^{-\rho s} K(s,0) \, ds$$
 で与えられる.

ただし K は次の生成作用素が定める Gauss-Markov 過程のカーネル

$$Gf(x) = f'(x) + x_+ \left(f(-x) - f(x) \right)$$

$$\sigma_{\text{FECMC}}^2 = \sqrt{\frac{32}{\pi}}$$

任意の $\rho > 0$ について

$$\sigma_{\mathrm{BPS}}^2(\rho) < \sigma_{\mathrm{FECMC}}^2$$

計算複雜性

単位長の軌跡をシミュレートするために 必要な $\nabla U(x)$ の call 回数は O(d)

比較

Random Walk Metropolis-Hastings O(d)

 $O(d^{1/2})$ Metropolis-adjusted Langevin

Hamiltonian Monte Carlo

 $O(d^{1/4})$

モンテカルロ分散

球面対称関数 $f:\mathbb{R}^d \to \mathbb{R}$ に関して

$$\operatorname{Var}\left[\frac{1}{N}\sum_{n=1}^{N}f(X_{\delta n}^{\mathrm{BPS}})\right] \geq \operatorname{Var}\left[\frac{1}{N}\sum_{n=1}^{N}f(X_{\delta n}^{\mathrm{FECMC}})\right]$$

が十分大きい次元 $d\gg 1$ で成立

* 一般の *f* でも成り立つ

極限での「速度」

 $\widetilde{Y}_t := Y_{\alpha^2 t}$ と定めると $d\widetilde{Y}_t = -\frac{(\alpha\sigma)^2}{L}\widetilde{Y}_t dt + \sigma\alpha d\widetilde{B}_t$

を満たす。この意味で

FECMC の方が極限で BPS より「速い」