

Computational Complexity Comparison via Scaling Limits for Emerging MCMC Samplers

Hirofumi Shiba

Sampling Problem

Obtain samples from $\pi(x) \propto e^{-U(x)}$ by only evaluating $U, \nabla U$

Piecewise Deterministic Monte Carlo

cf. Fearnhead+ (2018)

① Auxiliary Variable V & its distribution $\mu(v) \propto e^{-K(v)}$ are introduced: $\tilde{\pi}(x, v) := \pi(x)\mu(v)$ (augmented)

② Deterministic Flow ③ Random Times

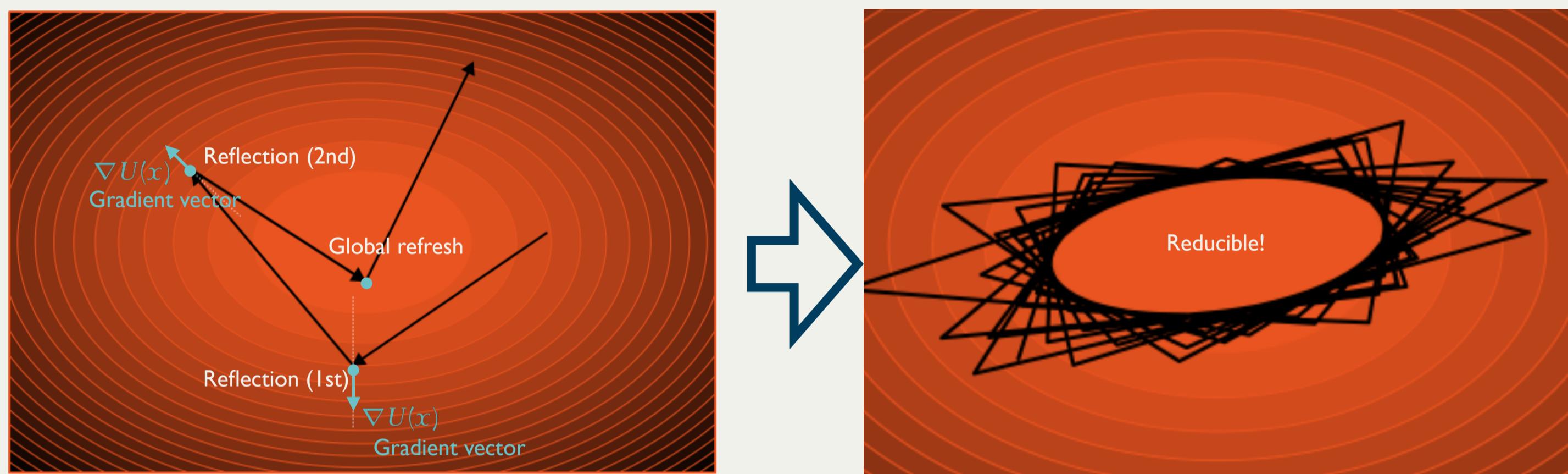
ODE $\begin{cases} \dot{x}_t = f(x_t, v_t) \\ \dot{v}_t = g(x_t, v_t) \end{cases}$
the solution $t \mapsto (x_t, v_t)$

Rate function $\lambda(x, v) = (v|\nabla U(x))_+ + \rho$
gives rise to random times

T_1, T_2, T_3, \dots

BPS

Bouncy Particle Sampler



employs
③-A deterministically
③-B globally

Running Example: $U^{(d)}(x) := \frac{1}{2} \sum_{i=1}^d x_i^2$ ($x \in \mathbb{R}^d$) Standard Gaussian

③-A Reflections

$V_{T_i} \sim Q(x_{T_i-}, v_{T_i-})$

New velocity, given by the law Q

③-B Refreshments

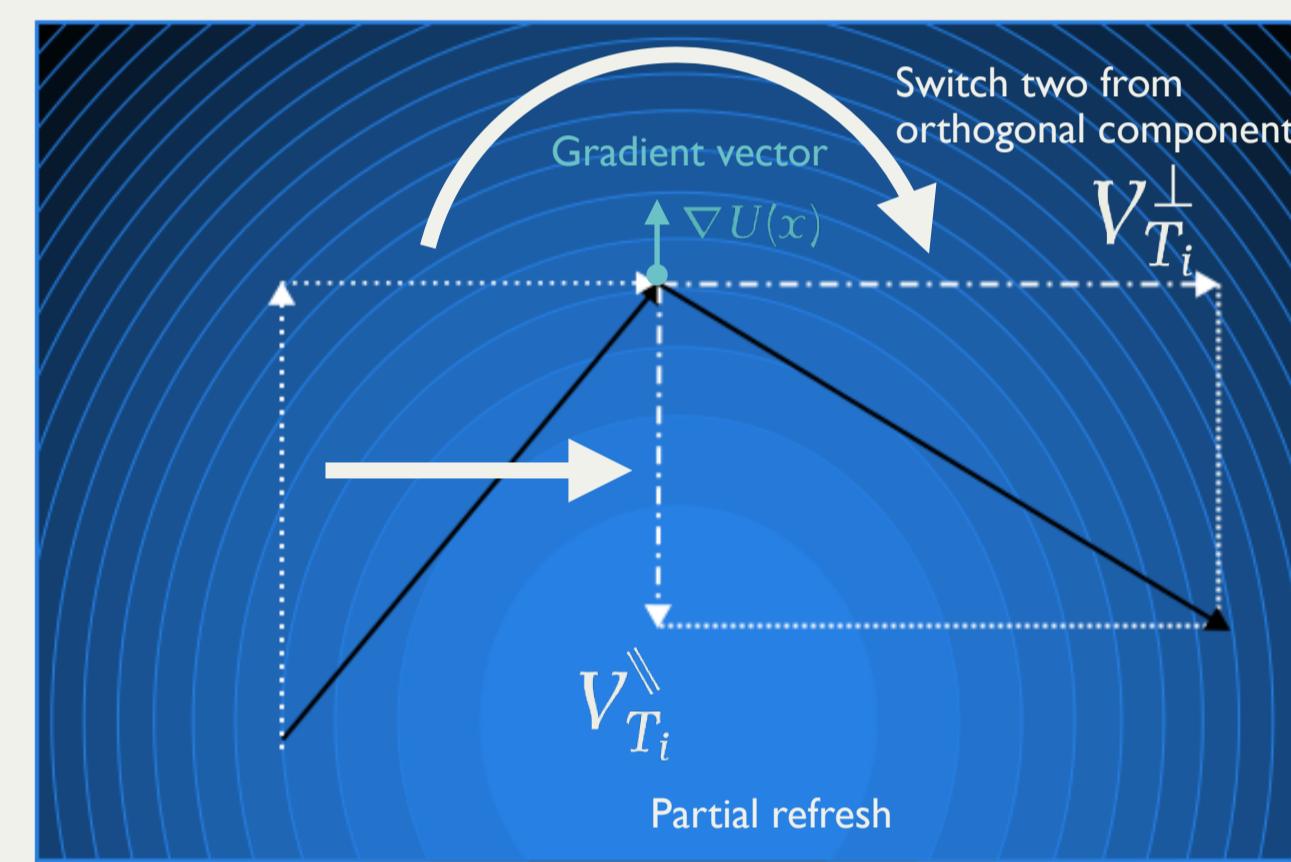
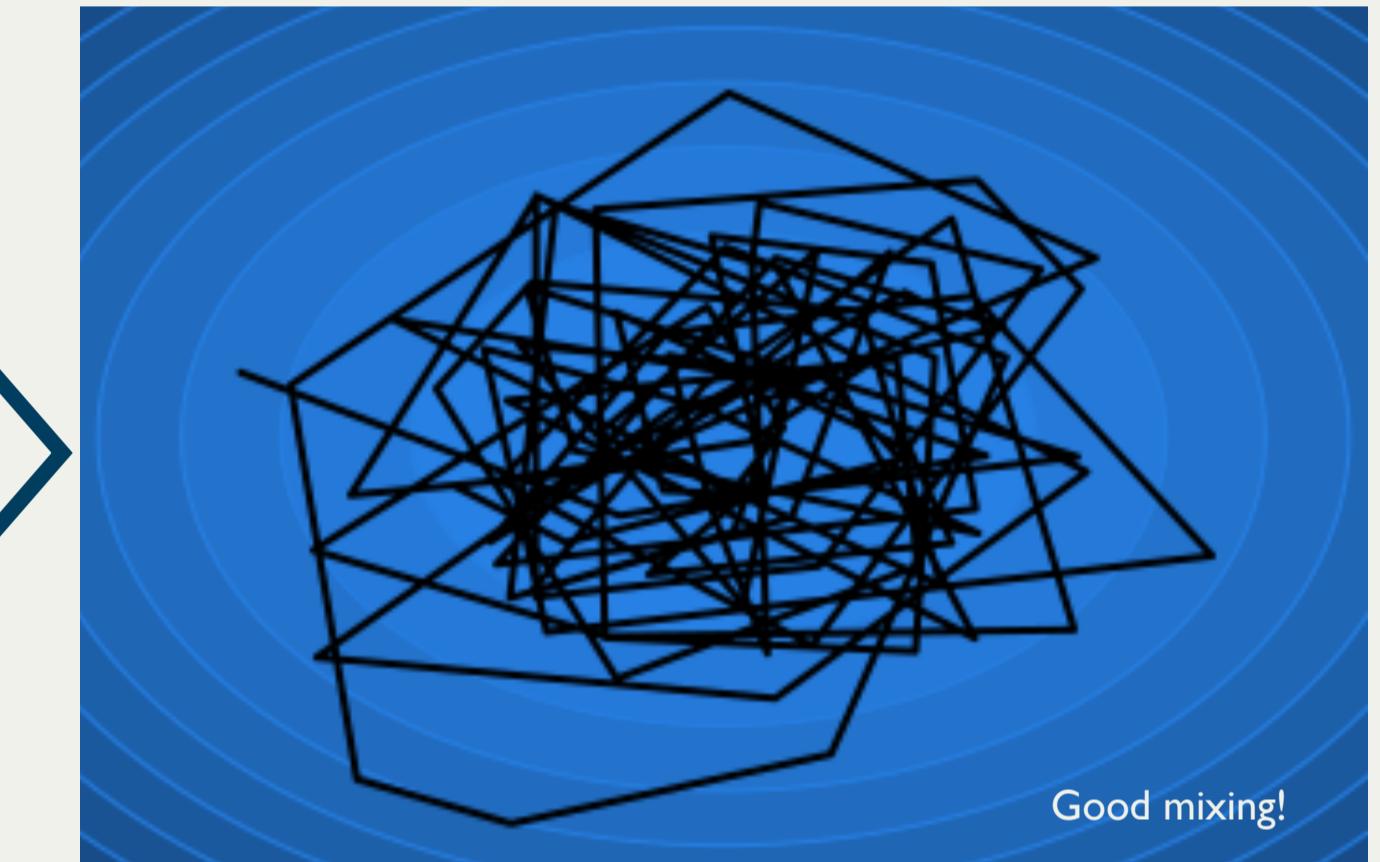
$V_{T_j} \sim \mu(v) dv$

Regeneration

FECMC

Forward Event-Chain Monte Carlo

combines
③-A stochastically
③-B partially



③-A: Deterministic Reflection

$$v_{T_i} \leftarrow v_{T_i-} - 2 \frac{(\nabla U(x_{T_i})|v_{T_i-})}{\|\nabla U(x_{T_i})\|^2} \nabla U(x_{T_i})$$

③-B: Global Refreshments (required!) $\rho > 0$

③-C: Stochastic Refreshment

Parallel Refresh $\begin{cases} V_{T_i}^{\parallel} \sim Q^{\parallel}(x_{T_i-}) \\ V_{T_i}^{\perp} \leftarrow A V_{T_i-}^{\perp} \end{cases}$

(③-B: NO GLOBAL REFRESHMENT REQUIRED)

$$V_{T_i} \leftarrow V_{T_i}^{\parallel} + V_{T_i}^{\perp}$$

$\rho = 0$

Scaling Analysis: Compare Limiting Dynamics as $d \rightarrow \infty$

Potential (= negative log-likelihood) $Y_t^{(d)} := \frac{U^{(d)}(X_{dt}^d) - d}{\sqrt{d}}$ converges to an Ornstein-Uhlenbeck diffusion $d Y_t = -\frac{\sigma^2}{4} Y_t dt + \sigma dB_t$

Th'm (Bierkens+2022)

$$\sigma_{\text{BPS}}(\rho)^2 = 8 \int_0^\infty e^{-\rho s} K(s, 0) ds$$

where K is the transition kernel of the Gauss-Markov process

$$Gf(x) = f'(x) + x_+ (f(-x) - f(x))$$

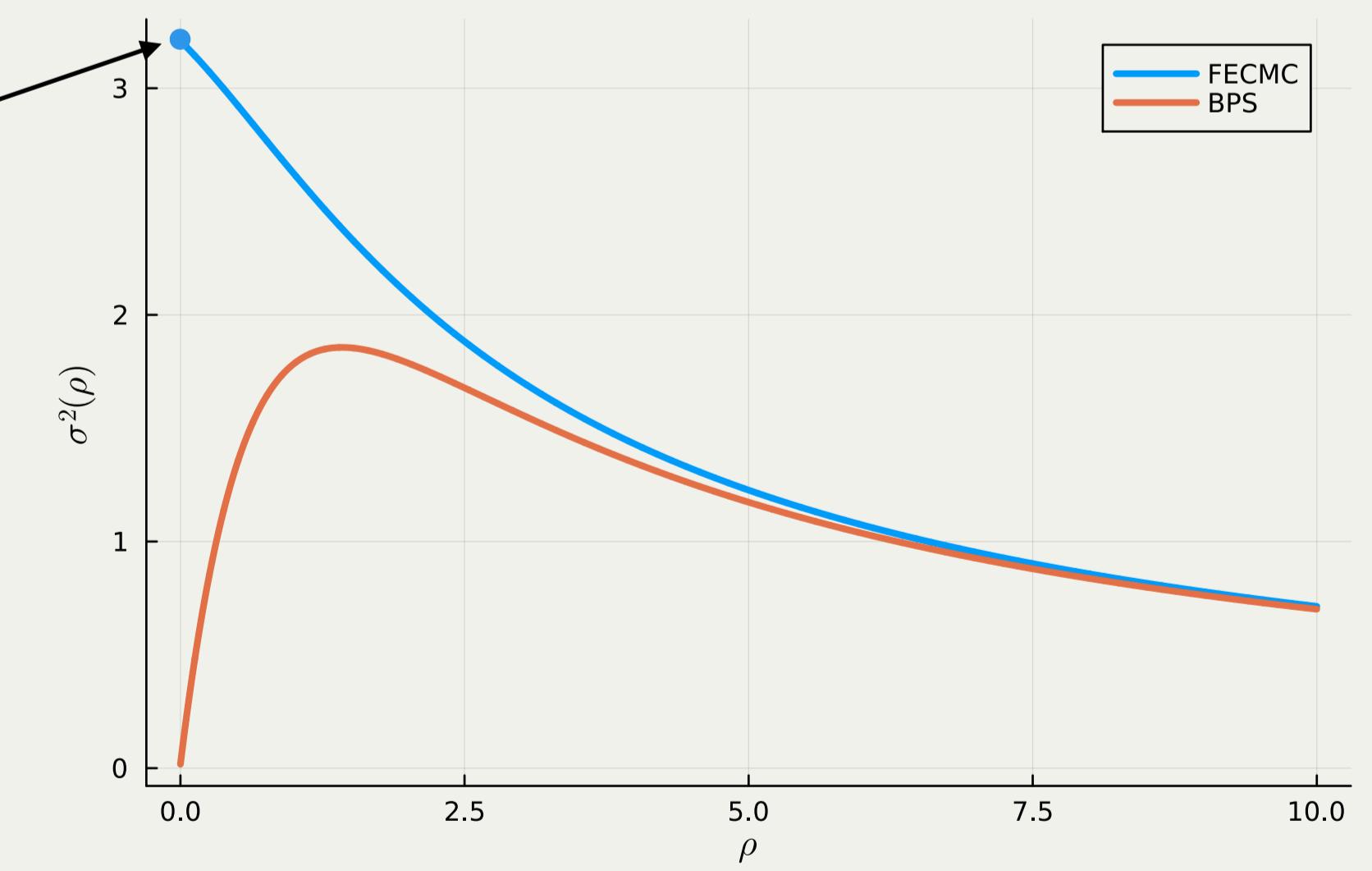
Theorem

Corollary

$$\sigma_{\text{FECMC}}^2 = \sqrt{\frac{32}{\pi}}$$

For all $\rho > 0$

$$\sigma_{\text{BPS}}^2(\rho) < \sigma_{\text{FECMC}}^2$$



Complexity

Number of gradient $\nabla U(x)$ evals scales as $O(d)$ (for the potential)

cf. Existing Computational Complexity Results

Random Walk Metropolis-Hastings $O(d^2)$

Metropolis-adjusted Langevin $O(d^{4/3})$

Hamiltonian Monte Carlo $O(d^{5/4})$

MSE / Monte Carlo Variance

For spherically symmetric $f : \mathbb{R}^d \rightarrow \mathbb{R}$

$$\text{Var} \left[\frac{1}{N} \sum_{n=1}^N f(X_{\delta n}^{\text{BPS}}) \right] \geq \text{Var} \left[\frac{1}{N} \sum_{n=1}^N f(X_{\delta n}^{\text{FECMC}}) \right] = O \left(\frac{d}{N} \right)$$

in high dimensions $d \gg 1$ critical slow down!

Monitor the time-derivative process!

$$\frac{d}{dt} f(X_t) = (\nabla f(X_t)|V_t) =: R_t$$

An Early Diagnostic

→ MSE reduction by an $O(d^{-1})$ scale

