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1 A Brief History of PDMP: From Computational Physics to Bayesian Statistics
Piecewise deterministic Markov process (PDMP) serves as a mathematical umbrella for a class of ‘rejection-free’ continuous-time samplers
that were originally proposed in computational physics, such as event-chain Monte Carlo Bernard et al. (2009) and the rejection-free scheme
of Peters and de With (2012). In essence, most PDMP samplers work by simulating a piecewise linear trajectory whose invariant measure
matches the target distribution. One could therefore have called them ‘piecewise-linear Markov processes’. We adopt the terminology PDMP
following the classical operations-research literature of Davis (1984), where this class of stochastic processes was introduced and studied
from a general probabilistic viewpoint.

The event-chain algorithm, a predecessor of PDMP samplers, has become a cornerstone of computational physics. A prominent
achievement is the two-dimensional melting transition simulation by Bernard and Krauth (2011). Through large-scale simulations up to the
order of 106 particles, the authors reported the spontaneous emergence of local hexatic structures. Such empirical successes are cheifly
attributed to the remarkable scalability of event-chain-type algorithms in short-range interacting systems, where they can outperform the
state-of-the-art approaches such as Hamiltonian Monte Carlo (HMC).

Bouchard-Côté et al. (2018) translated these insights into the statistical vocabulary and popularized the framework by introducing
the Bouncy Particle Sampler (BPS), one of the first general purpose PDMP samplers. One of their narratives is as follows. From a
high-dimensional scaling viewpoint, HMC typically exhibits computational complexity of order Opd5{4q in dimension d, whereas PDMP
samplers can achieve Opdq scaling in sparse Markov random fields. PDMP methods can also be favourable in large data regimes: with
stochastic-gradient implementations and effective control variates, the cost can become essentially independent of the number of data points;
see Bierkens et al. (2019).

2 Comparing PDMP Efficiency via High-Dimensional Scaling Limits
Despite this early momentum, the development of PDMP methods that are broadly competitive across Bayesian models appears to have
slowed down. In fact, their most compelling properties seems to always come with the caveat ‘under a suitable implementation’, and the
resulting methods can be less plug-and-play than HMC. A key bottleneck is the lack of a unified theoretical framework for comparing PDMP
algorithms. For instance, one of the original contributer for event-chain algoriths developed Forward Event-Chain Monte Carlo (FECMC)
Michel et al. (2020), leveraging physical intuition to design an algorithm that is often substantially more efficient than BPS in practice.
However, the original work provided limited theoretical explanation for the observed gains, and the method remained less widely adopted
than its empirical performance might suggest.

We propose to quantify the claim that FECMC is faster than BPS as follows. For simplicity, let the target πd be the d-dimensional
standard Gaussian distribution, and denote by pXd

t qtě0 the continuous-time Markov process produced by either FECMC or BPS targeting
πd. A particularly hard-to-explore direction is given by the negative log-density, or potential

hdpxq :“ ´ log πdpxq,

which, for the standard Gaussian, reduces to hdpxq “ }x}2
2{2. As d grows, the scalar projection rYd

t :“ hdpXd
t q becomes increasingly

slow as the exploration must effectively coordinate across d independent directions. We therefore consider the accelerated (and normalised)
process

Yd
t :“ hdpXd

t q ´ Eπd rhdpXqs
a

Varπd rhdpXqs
, t ě 0,
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and study its scaling limit as d Ñ 8 under stationarity Xd
0 „ πd. For both FECMC and BPS, the limiting dynamics take the same functional

form:
dYt “ ´

σ2

2 Yt dt ` σ dBt , (1)

where Bt is standard Brownian motion. Crucially, the diffusion coefficient σ depends on the algorithm. Writing σF and σB for FECMC and
BPS respectively, we obtain σF ą σB. Since (1) is an Ornstein–Uhlenbeck process, the difference amounts to a time change t ÞÑ pσ2

F {σ2
Bqt,

so that σF ą σB rigorously means that FECMC explores the geometry of hdpxq “ ´ log πdpxq faster than BPS.
This comparison has an important implication for Monte Carlo estimation: For estimating Eπd rhdpXqs, the asymptotic variance under

FECMC is smaller by a factor of approximately σ2
F {σ2

B « 1.77 compared with BPS. When CPU time is also taken into account, the
performance gap is even more pronounced: in moderate-to-high dimensions (for d ě 10), we observe that the effective sample size (ESS)
for ErhdpXqs can differ by around a 15ˆ.

3 Fast Proxy Trick: Early Detection of Mixing Slowdown for PDMP Samplers

A closer inspection of the proof reveals that the key object behind rYd
t is the time derivative thereof, denoted by

Rd
t :“ pXd

t , Vd
t q,

where Vd
t is the velocity (momentum) variable. In common practice, the velocity variable Vd

t is treated solely as an auxiliary component
introduced purely for computational convenience, hence discarded after sampling. However, we claim that Vd

t carries nontrivial information,
especially about the transient behaviour of the sampler when a separation of time scales is present.

Exploiting this slow-fast structure, we obtain as a corollary that one is able to estimate the asymptotic variance of Monte Carlo averages
for hd with an accuracy that does not degrade with the dimension d, by examining Rd instead of rYd. More broadly, our results suggest the
following principle: even when the sampler slows down by a factor Opdq along a difficult direction such as hdpXd

t q, this slowdown can be
detected on an Op1q time scale by monitoring its time derivative. Such coupling between slow and fast processes should abound in other
momentum-based methods such as HMC, where auxiliary variables may mix faster than the position components. In PDMP algorithms,
such time derivatives are typically readily available without heavy computational overheads because they appear internally in the event-rate
computation. This ‘fast proxy’ trick points to a promising route toward efficient, principled convergence diagnostics for PDMP samplers.
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