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What Is Particle Filter?

Particle Filter = Sequential Monte Carlo (SMC)

e an simulation-based algorithm which performs filtering even 1n
non-Gaussian and non-linear state space models

— overcoming the weeknesses of then-standard Kalman-based
filtering methods (e.g. EKF).

e a filtering distribution 1s approximated by a cloud of weighted
samples, hence giving rise to the term ’particle filter’.

e The samples are propagated to approximate the next distribution
— leading to efficient sequential estimation in dynamic settings
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MCMC vs. SMC

MCMC has evolved into PDMP. How about SMC?

e PDMPs (Piecewise Deterministic Markov Processes) have shown
great potential for developing scalable sampling methods, notably
in creating continuous-time versions of MCMC:s.

eIn 2012, a PDMP was identified through the continuous limit
of the MCMC, Metropolis-Hastings algorithm.

e Empirical evidence suggests that continuous-time MCMCs are
more efficient than their discrete-time counterparts.

Bouncy Particle Sampler

Z1g-/Z.ag Sampler

Inquiry for Continuous-time SMC

MCMC has now taken a step ahead; 1t 1s time for SMC to explore its
continuous-time limit!

A Generic Particle Filter: An Algorithmic Description

Procedure of a generic step of a Particle Filter at time ¢
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1 Resampling Step
Particles with high weights are duplicated, and those with the
lowest weights are discarded.

2) Movement Step
Subsequently, a MCMC move 1s executed from the resampled

particles.

A Necessary Condition: Resampling Stability

e In order to have a time-step A — 0 limit, resampling events must
occur with (at most linearly) decreasing frequency.

e Only the most efficient resampling schemes satisfy this property.

Root mean squared errors of marginal likelihood estimates [Chopin et al., 2022]
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The Continuous-time Limit Process

The continuous-time limit process, 1if 1t exists, 1s characterized by a
Feller-Dynkin process, whose infinitesimal generator 1s given by:
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Conclusions

SMC with efficient resampling schemes possess a continuous-time
limit A — O, which turns out to be a Feller-Dynkin process, a dif-
fusion process with jumps, when (X4) is a diffusion.

Forthcoming Research

e What are the properties of this limit jump process, and how do
they change with modifications to the underlying latent process?

e How does the timing of resampling affect overall efficiency? Can
insights be gained from the perspective of continuous-time limits?

e Does the continuous-time limit process improve SMC etficiency
when used for particle propagation ?
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