Bierkens, J., Fearnhead, P., and Roberts, G. (2019).
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data.
The Annals of Statistics,
47(3), 1288–1320.
Chen, F., Lovász, L., and Pak, I. (1999).
Lifting markov chains to speed up mixing. In
Proceedings of the thirty-first annual ACM symposium on theory of computing, pages 275–281. New York, NY, USA: Association for Computing Machinery.
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987).
Hybrid monte carlo.
Physics Letters B,
195(2), 216–222.
Gelfand, A. E., and Smith, A. F. M. (1990).
Sampling-based approaches to calculating marginal densities.
Journal of the American Statistical Association,
85(410), 398–409.
Gelman, A., Roberts, G. O., and Gilks, W. R. (1996).
Efficient Metropolis Jumping Rules. In
Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting. Oxford University Press.
Martin, G. M., Fraizier, D. T., and Robert, C. P. (2023). Computing bayes: From then ‘til now. Statistical Science, Advanced Publication, 1–17.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines.
The Journal of Chemical Physics,
21(6), 1087–1092.
Neal, R. M. (1994).
An improved acceptance procedure for the hybrid monte carlo algorithm.
Journal of Computational Physics,
111(1), 194–203.
Peters, E. A. J. F., and de With, G. (2012).
Rejection-free monte carlo sampling for general potentials.
Physical Review E,
85(2).
Roberts, G. O., Gelman, A., and Gilks, W. R. (1997).
Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms.
The Annals of Applied Probability,
7(1), 110–120.
Tartero, G., and Krauth, W. (2023).
Concepts in monte carlo sampling.
Turitsyn, K. S., Chertkov, M., and Vucelja, M. (2011).
Irreversible Monte Carlo algorithms for Efficient Sampling.
Physica D-Nonlinear Phenomena,
240(5-Apr), 410–414.
Vasdekis, G., and Roberts, G. O. (2022).
A note on the polynomial ergodicity of the one-dimensional zig-zag process.
Journal of Applied Probability,
59(3), 895–903.
酒井佑士. (2017).
マルコフ連鎖モンテカルロ法における詳細つり合い条件の破れの効果と応用 (PhD thesis). 東京大学. Retrieved from
https://repository.dl.itc.u-tokyo.ac.jp/records/50422